Extended Kalman Filter (EKF) MATLAB Implimentation

Extended Kalman Filter (EKF) MATLAB Implimentation - welcome to our blog Techno Live, now we will discuss information about the Extended Kalman Filter (EKF) MATLAB Implimentation, our admins on this blog has been around to collect information you are looking for so that we usakan to display complete information for you, and in this blog, you can also search for other information, ok please continue reading may be easily understood:

This is about : Extended Kalman Filter (EKF) MATLAB Implimentation
And this article : Extended Kalman Filter (EKF) MATLAB Implimentation

You can also see our article on:


    Extended Kalman Filter (EKF) MATLAB Implimentation

    Kalman Filter (KF) 

    Linear dynamical system (Linear evolution functions)





    Extended Kalman Filter (EKF) 

    Non-linear dynamical system (Non-linear evolution functions)


    Consider the following non-linear system:



    Assume that we can somehow determine a reference trajectory 
    Then:


    where

    For the measurement equation, we have:

    We can then apply the standard Kalman filter to the linearized model
    How to choose the reference trajectory?
    Idea of the extended Kalman filter is to re-linearize the model around the most recent state estimate, i.e.



    The Extended Kalman Filter (EKF) has become a standard    technique used in a number of 
    # nonlinear estimation and 
    # machine learning applications
    #State estimation
    #estimating the state of a nonlinear dynamic system
    #Parameter estimation
    #estimating parameters for nonlinear system identification
    #e.g., learning the weights of a neural network
    #dual estimation 
    #both states and parameters are estimated simultaneously
    #e.g., the Expectation Maximization (EM) algorithm

    MATLAB CODE
    ########################################################################
    function [x_next,P_next,x_dgr,P_dgr] = ekf(f,Q,h,y,R,del_f,del_h,x_hat,P_hat);
    % Extended Kalman filter
    %
    % -------------------------------------------------------------------------
    %
    % State space model is
    % X_k+1 = f_k(X_k) + V_k+1   -->  state update
    % Y_k = h_k(X_k) + W_k       -->  measurement
    %
    % V_k+1 zero mean uncorrelated gaussian, cov(V_k) = Q_k
    % W_k zero mean uncorrelated gaussian, cov(W_k) = R_k
    % V_k & W_j are uncorrelated for every k,j
    %
    % -------------------------------------------------------------------------
    %
    % Inputs:
    % f = f_k
    % Q = Q_k+1
    % h = h_k
    % y = y_k
    % R = R_k
    % del_f = gradient of f_k
    % del_h = gradient of h_k
    % x_hat = current state prediction
    % P_hat = current error covariance (predicted)
    %
    % -------------------------------------------------------------------------
    %
    % Outputs:
    % x_next = next state prediction
    % P_next = next error covariance (predicted)
    % x_dgr = current state estimate
    % P_dgr = current estimated error covariance
    %
    % -------------------------------------------------------------------------
    %

    if isa(f,'function_handle') & isa(h,'function_handle') & isa(del_f,'function_handle') & isa(del_h,'function_handle')
        y_hat = h(x_hat);
        y_tilde = y - y_hat;
        t = del_h(x_hat);
        tmp = P_hat*t;
        M = inv(t'*tmp+R+eps);
        K = tmp*M;
        p = del_f(x_hat);
        x_dgr = x_hat + K* y_tilde;
        x_next = f(x_dgr);
        P_dgr = P_hat - tmp*K';
        P_next = p* P_dgr* p' + Q;
    else
        error('f, h, del_f, and del_h should be function handles')
        return
    end

    ##############################################################################


    For more

    https://drive.google.com/folderview?id=0B2l8IvcdrC4oMzU3Z2NVXzQ0Y28&usp=sharing


    Articles Extended Kalman Filter (EKF) MATLAB Implimentation finished we discussed

    A few of our information about the Extended Kalman Filter (EKF) MATLAB Implimentation, I hope you can exploit carefully

    No've You've finished reading an article on Extended Kalman Filter (EKF) MATLAB Implimentation and many articles about modern home in our blog this, please read it. and url link of this article is http://liveeconcerts.blogspot.com/2014/08/extended-kalman-filter-ekf-matlab.html Hopefully discussion articles on provide more knowledge about the world of tech gadgets.

    Tag :

    Related Posts :

    0 Response to "Extended Kalman Filter (EKF) MATLAB Implimentation"

    Post a Comment